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ABSTRACT
Since the emergence of translation memory software, translation companies and freelance
translators have been accumulating translated text for various languages and domains. This
data has the potential of being used for training domain-specific machine translation systems
for corporate or even personal use. But while the resulting systems usually perform well in
translating domain-specific language, their out-of-domain vocabulary coverage is often insuffi-
cient due to the limited size of the translation memories. In this paper, we demonstrate that
small in-domain translation memories can be successfully complemented with freely available
general-domain parallel corpora such that (a) the number of out-of-vocabulary words (OOV)
is reduced while (b) the in-domain terminology is preserved. In our experiments, a German–
French and a German–Italian statistical machine translation system geared to marketing texts
of the automobile industry has been significantly improved using Europarl and OpenSubtitles
data, both in terms of automatic evaluation metrics and human judgement.

KEYWORDS: Machine Translation, Translation Memory, Domain Adaptation, Perplexity Mini-
mization.
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1 Introduction

Technological advances in the field of automated translation have increased economic pressure
on translation companies and freelance translators. According to a recent study published by
the European Union (Pym et al., 2012), there is evidence that the per-word rate for professional
translations has decreased significantly in some western European countries.

On the other hand, computer-assisted translation tools such as translation memory (TM)
systems—allowing translators to store their translations in a personal or corporate database and
reuse them on future occasions—have become an integral part of state-of-the-art translation
workflows, even for freelancers.

More recently, there have been efforts to combine machine translation systems with translation
memories (Kanavos and Kartsaklis, 2010; Koehn and Senellart, 2010). As a result, major
commercial systems such as SDL TradosStudio1, Across LanguageServer2, and even open source
alternatives such as OmegaT3 now offer machine translation interfaces, allowing translators
to have segments automatically (pre-)translated in case there is no corresponding translation
available in their translation memory.

In a joint project between the UZH Institute of Computational Linguistics and SemioticTransfer
AG, we currently explore the potential of using domain-specific statistical machine translation
(SMT) systems in human-based translation workflows. We hypothesize that SMT systems
trained on SemioticTransfer’s translation memory data will enable their translators to work
more efficiently while preserving translation quality.

In our present paper, we report on training and evaluating statistical machine translation
systems for two language pairs on a relatively small amount of marketing texts related to the
automobile industry. In Section 2, we outline the foreseen translation scenario and introduce
means of compensating for the limited size of our in-domain training material. In Section 3,
we present SMT systems that are based on a combination of in-domain and out-of-domain
data. The combined systems are compared against an in-domain-only baseline. We discuss our
findings in Section 4, and lastly, we conclude and outline the further course of our project in
Section 5.

2 Background

In this section, we first describe the translation scenario that our domain-specific SMT systems
should be applied in. Second, we detail techniques for combining limited amounts of in-domain
with out-of-domain translation data.

2.1 Translation Scenario

In SemioticTransfer’s current translation workflow, new language material to be translated
is imported into a corporate translation memory system by specially trained staff termed
translation managers. Subsequently, the manager prepares one or several work packages, each
of which consists of a number of documents in the source language with an accompanying
empty document in the target language. Next, each source language segment is automatically
looked up in the translation memory, and exact matches are directly inserted into the target

1http://www.sdl.com/products/sdl-trados-studio/index-tab3.html
2http://www.across.net/en/across-machine-translation-integration.aspx
3http://www.omegat.org/en/howtos/google_translate.html
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language document. A specialist translator then translates all remaining segments one-by-one.
This process is again supported by the translation memory system: For each segment, the
translator is shown similar segments that are already stored in the TM—it is her or his decision
whether to take an existing segment and adapt it or translate the segment from scratch instead.

There are many ways to integrate machine translation in such a workflow. Kanavos and
Kartsaklis (2010) propose a pragmatic approach that uses a simple SMT model trained on all
available translation memory data. This model is used to translate segments for which no fuzzy
match with more than 80% similarity is available in the TM, which are subsequently post-edited
by specialist translators. The automatic translation is either invoked in an “on-demand” (the
translator requests an SMT hypothesis for a segment he is currently translating) or a “one
time” mode. We focus on the latter which automatically inserts SMT translations for segments
with fuzzy matches below 80% into the target language document before it is handed to the
translator, i.e., we produce a pre-translation which is then completed and post-edited inside the
translation memory system.

2.2 Domain Adaptation

Unlike Kanavos and Kartsaklis (2010), we focus on a specific text genre: marketing texts of the
automobile industry. For this reason, we cannot use large general-domain parallel corpora for
training our translation models as (a) many domain-specific terms are not contained in such
resources and (b) domain-specific terms would be prone to mistranslation because of domain
mismatches. For example, the German word Arten could be translated as espèces (species) in a
general-domain DE–FR translation system. While this translation could be used, for example, in
biological texts, it is not adequate in the automobile domain as cars are of certain types (types)
rather than species.

To counteract these problems, Koehn and Senellart (2010) have proposed to retrieve a fuzzy
match in the TM for each source segment to be translated, identify the mismatched parts, and
replace these parts by an SMT translation. Their approach relies on automatic word alignment
to find the target words that are affected by the mismatch.

In contrast to Koehn and Senellart (2010) we approach combining parallel texts from domain-
specific translation memories and general-domain corpora as a domain adaptation problem.
We use the approach of mixture-modeling, commonly used for language model adaptation and
extended to translation models by Foster and Kuhn (2007). The main distinctive feature of
this approach for both language and translation models is that instead of separating the data
and models into in-domain/out-of-domain in a binary setting, different domains are assigned
real-valued weights, reflecting their similarity to in-domain text material. Using these weights
the single domain models p= {pi}i=1...N are combined into a single adapted model:

p(x) =wp(x) =
N∑

i=1

wi pi(x).

The weights w are selected to optimize the performance of the adapted model on an in-domain
development set. Language model performance is estimated with its entropy on the said set.
Unlike Foster and Kuhn (2007) who use a monolingual performance measure for translation
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models we follow Sennrich (2012) and use the cross-entropy of the adapted translation model
on the development set, a bilingual performance measure:

p̂(x) = arg min
w

H(p), where H(p) =− ∑
x∈X(d)

p̃(x) log2 p(x)

Here H(p) is the cross-entropy of the adapted language or translation model p and X(d) is the
development set. The empirical probability distribution p̃ is based on the development set.
The nature of x ∈ X(d) depends on which models are handled: in case of language models, it
represents a single sentence; in case of translation models it stands for a 〈source, t ranslat ion〉
tuple. For more details see (Sennrich, 2012; Chen and Goodman, 1998).

3 Combining In-Domain with Out-of-Domain Data

In this section, we describe the statistical machine translation systems we have trained for
our experiments. We briefly describe the training data (Section 3.1) and the system setups
(Section 3.2), which we have evaluated by automatic means (Section 3.3.1) as well as with a
human evaluator (Section 3.3.2).

3.1 Training Data

3.1.1 In-Domain

The in-domain data has been extracted from SemioticTransfer’s translation memories for
German–French (DE–FR) and German–Italian (DE–IT). All texts are related to the automobile
industry; the translated segments stem from brochures, websites, and price lists. For this reason,
a segment may refer to a whole sentence, but also to smaller units such as short phrases or even
single words of table entries. After cleaning the memories, we were able to extract 166’957
segments for DE–FR and 112’166 segments for DE–IT, which corresponds to ∼2.0 and ∼1.5
million tokens, respectively. Please note that all segments are unique. Unlike text from a
corpus of running words, each segment from a translation memory occurs only once. The exact
numbers are shown in Table 1.

3.1.2 Out-of-Domain

As for out-of-domain data, we have chosen two freely available parallel corpora: Europarl v7
(EP7) (Koehn, 2005) and OpenSubtitles 2011 (OS11) (Tiedemann, 2009). We extracted the
DE–FR and DE–IT translations from each of them, resulting in ∼48.5 (EP7) and∼16.0 (OS11)
million tokens per language pair. See Table 1. We point out that these parallel corpora are not
thematically related to our in-domain data. Rather than that, they are much more extensive and
thus cover a broader vocabulary, which is missing in our in-domain data due to its limited size.

In-Domain Europarl OpenSubtitles

DE–FR DE–IT DE–FR DE–IT DE–FR DE–IT

Segments 166’957 112’166 1’903’628 1’805’792 2’852’474 2’131’004

Tokens F 2’011’872 1’413’452 48’405’406 48’419’389 16’858’070 15’642’379
Tokens E 2’632’256 1’731’219 56’372’702 50’689’987 16’370’845 15’458’666

Tokens/Segment F 12.05 12.60 25.43 26.81 5.91 7.34
Tokens/Segment E 15.77 15.43 29.61 28.07 5.74 7.25

Table 1: In-Domain and Out-of-Domain Training Data
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3.2 Domain-Specific SMT Systems

We have trained an in-domain-only baseline and three systems that combine in-domain and
out-of-domain data (see Section 3.1) in different weighting modes for each language pair.

3.2.1 Baseline Systems

Using only the in-domain data, we trained a standard phrase-based statistical machine trans-
lation system for DE–FR and DE–IT. 5-gram language models were trained using the IRST
Language Modeling Toolkit (Federico and Cettolo, 2007). Otherwise, we relied on the Moses
decoder (Koehn et al., 2007) and its dedicated scripts for training, tokenization, and truecasing.

3.2.2 Combined Systems

Additionally, we trained separate translation and language models using our out-of-domain
corpora. Apart from the training data, the setup was the same as for our baseline systems. This
left us with three phrase tables and language models per language pair: in-domain, EP7, and
OS11. All combined systems presented in this section comprise all of these models, but they are
differently weighted. The weighting modes are defined as follows.

Unweighted Combination (unweighted)

In the unweighted mode, we simply concatenated the in-domain, EP7, and OS11 language
material. On this basis, we trained a combined translation and language model for each
language pair.

Weighted Language Model (weighted LM)

In the weighted LM mode, we used an interpo-
lated language model alongside an unweighted
translation model for each language pair. We
employed interpolate-lm of the IRST Lan-
guage Modeling Toolkit (Federico and Cettolo,
2007) to estimate interpolation weights for
the in-domain, EP7, and OS 11 language mod-
els by minimizing their perplexity on a devel-
opment set of 2’000 in-domain segments (see
section 2.2).

DE–FR DE–IT

Corpus TM LM TM LM

In-Domain - 91.9 - 92.9

EP7 - 5.8 - 5.0

OS11 - 2.3 - 2.1

Interpolation weights for translation (TM) and lan-
guage (LM) models in %, weighted LM mode.

Weighted Translation Model (weighted TM)

DE–FR DE–IT

Corpus TM LM TM LM

In-Domain 92.3 - 93.7 -

EP7 6.2 - 5.1 -

OS11 1.5 - 1.2 -

Interpolation weights for translation (TM) and lan-
guage (LM) models in %, weighted TM mode.

In the weighted TM mode, we combined an
interpolated translation model with an un-
weighted language model for each language
pair. We applied Sennrich’s approach (Sen-
nrich, 2012) for estimating interpolation
weights for the in-domain, EP7, and OS11
translation models, again using a develop-
ment set of 2’000 in-domain segments (see
section 2.2).
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Weighted Language and Translation Model (weighted LM+TM)

In the weighted LM+TM mode, we used both
interpolated language and translation models,
i.e., we combined the interpolated language
models of the weighted LM mode with the in-
terpolated translation models of the weighted
TM mode for each language pair.

DE–FR DE–IT

Corpus TM LM TM LM

In-Domain 92.3 91.9 93.7 92.9

EP7 6.2 5.8 5.1 5.0

OS11 1.5 2.3 1.2 2.1

Interpolation weights for translation (TM) and lan-
guage (LM) models in %, weighted LM+TM mode.

3.3 Evaluation

3.3.1 Automatic Evaluation

For evaluating the systems described in Section 3.2, we compiled a test set of 500 segments
for both language pairs. The segments were taken from a recent contract of SemioticTransfer:
the translation of an automobile company’s website from German to French and Italian. The
translation was carried out by two professional translators using SemioticTransfer’s translation
memories.

We used multeval (Clark et al., 2011) for evaluating our systems. As there is no full METEOR
support for Italian (Denkowski and Lavie, 2011), this score is only available for the DE–FR
system. Table 2 gives an overview on all metrics and the performance of the systems; a
discussion of these and other results is given in Section 4.

DE–FR DE–IT

Metric Mode Avg ssel sTest p-value Avg ssel sTest p-value

BLEU ↑
baseline 32.2 1.3 0.1 - 31.3 1.4 0.3 -
unweighted 31.3 1.3 0.1 0.00 30.8 1.4 0.2 0.12
weighted LM 31.8 1.3 0.2 0.15 32.9 1.5 0.3 0.00
weighted TM 32.8 1.3 0.3 0.00 31.9 1.4 0.0 0.02
weighted LM+TM 33.0 1.3 0.2 0.00 31.9 1.4 0.1 0.00

TER ↓
baseline 51.7 1.2 0.3 - 55.9 1.4 0.6 -
unweighted 52.9 1.2 0.1 0.00 54.3 1.3 0.5 0.00
weighted LM 51.7 1.2 0.4 0.99 51.9 1.3 0.6 0.00
weighted TM 50.9 1.2 0.6 0.00 54.7 1.4 0.0 0.00
weighted LM+TM 50.6 1.2 0.6 0.00 53.3 1.3 0.5 0.00

METEOR ↑
baseline 50.5 1.1 0.1 -
unweighted 50.1 1.1 0.2 0.12
weighted LM 50.8 1.1 0.2 0.10
weighted TM 51.6 1.1 0.3 0.00
weighted LM+TM 51.7 1.1 0.3 0.00

Table 2: Automatic Evaluation. Baseline and Combined Systems. p-values are relative to baseline and
indicate whether a difference of this magnitude (between the baseline and the system on that line) is likely
to be generated again by some random process (a randomized optimizer). Metric scores are averages over
5 MERT runs (Och, 2003; Bertoldi et al., 2009). ssel indicates the variance due to test set selection and has
nothing to do with optimizer instability.
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DE–FR DE–IT

Mode baseline eq. weighted TM baseline eq. weighted TM

general 15.3 48.7 36.0 15.3 30.7 54.0

terminology 14.7 48.7 36.7 15.3 30.7 54.0

Table 3: Human Evaluation. Subjective preference for 150 Segments translated by the baseline and
weighted TM systems in terms of general and terminological accuracy in %. “eq.” indicates that both
translation hypotheses were considered equally well.

3.3.2 Human Evaluation

In order to reinforce our automatic evaluation, we conducted a further experiment with a
human evaluator who is familiar with SemioticTransfer’s automobile domain terminology. We
wanted to assess whether and to which extent the difference between the baseline’s and a
combined system’s scores was perceptible for an actual human translator. We chose the weighted
TM systems for the comparison as preliminary results suggested negligible differences between
weighted TM and weighted LM+TM scores. At the time, we concluded that weighting the
language model in addition to the translation model is not worth the additional effort.

We provided our subject with a source segment (DE) alongside a reference translation (FR/IT)
and two translation hypotheses for 150 randomly selected segments. One hypothesis was
produced by the baseline, the other by the weighted TM system. The subject’s task was to rate
which hypothesis was better, (a) in general and (b) with regard to domain technology, with ties
allowed. This evaluation setup, known as pairwise system comparison, has lately been favored
by the MT community for it is simpler and better reproducible than, e.g., fluency/adequacy
judgements on a five-point scale (Callison-Burch et al., 2012). Furthermore, genuine differences
between two systems can easily be quantified using the Sign Test for paired observations.

The results, shown in Table 3, reveal the evaluator’s clear preference towards the weighted TM
system’s translations. This holds especially for DE–IT. Statistically, the weighted TM systems
outperform the baseline in all regards at p ≤ 0.001, except for the adequacy of domain
terminology in the DE–FR systems (p ≤ 0.01).

4 Discusson

Our evaluation (see Section 3.3) shows that adding large amounts of out-of-domain data without
adequate weights is no suitable means of improving our in-domain-only baseline systems (see
Table 2, unweighted mode). An unweighted combination with the out-of-domain models lowers
the scores for DE–FR compared to the baseline. The difference is statistically significant for BLEU
(p≤0.01) and TER (p≤0.01), but not for METEOR. For DE–IT, TER improves (p≤0.01), but at
the same time, BLEU decreases slightly (though not significantly). Insights into corresponding
translations reveal that the added material reduces the number of out-of-vocabulary (OOV)
words, but this effect is by far outclassed by the number of domain-specific terms and phrases
that get translated in an inadequate way in the unweighted mode (see Table 5).

The weighted LM mode has opposing effects on the two language pairs. On one hand, the
language model adaptation highly affects DE–IT. Weighted LM performs best out of all modes for
this language pair and outperforms the baseline significantly, both in terms of BLEU (p≤0.01)
and TER (p≤0.01). This improvement is in line with the finding of Foster and Kuhn (2007) that
language model adaptation works well. Conversely, an interpolated language model has no
positive effect on the DE–FR language pair.
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DE–FR DE–IT

Set Feature Hunweighted Hweighted Hunweighted Hweighted

DEV

inverse phrase translation probability 2.21 2.18 1.90 1.88
inverse lexical weighting 6.91 5.85 – 7.19 5.75 ––

direct phrase translation probability 2.64 2.59 2.14 2.06
direct lexical weighting 7.35 6.13 – 7.66 5.92 ––

TEST

inverse phrase translation probability 2.91 3.32 + 3.39 3.78 +

inverse lexical weighting 5.24 5.22 5.53 5.55
direct phrase translation probability 3.63 3.88 3.37 3.77 +

direct lexical weighting 6.38 5.81 5.82 5.49

Table 4: Cross entropies H between the DEV and TEST sets and the unweighted and weighted phrase
tables. Plus and minus signs denote changes of ≥10% (+/−) and ≥20% (++ /−−).

In contrast, weighting the translation models (weighted TM mode) leads to a significant im-
provement of all scores in both language pairs (all at p ≤ 0.01, except p ≤ 0.05 for BLEU
in DE–IT). Here, it turns out that using Sennrich’s approach (Sennrich, 2012) to estimate
weights for in-domain and out-of-domain translation models is a promising way for improving
our systems. The high weights given to the in-domain models ensure that translations in
the domain-specific phrase tables are normally preferred over identical source segments with
different translations in the out-of-domain data (see Table 5). At the same time, the added
out-of-domain translations lower the OOV rate in the weighted TM systems, no matter how
small their translation probabilities become due to the weighted combination. In our DE–FR
test set, this corresponds to a reduction from 194 to 124 OOV types (-36.1%) .

Using both a weighted language and translation model results in no further improvement. For
DE–FR, there is a small increase in BLEU and TER, as well as a slight decrease in METEOR, but
neither of these changes is significant. For DE–IT however, adding the weighted translation
models on top of the weighted language models significantly decreases BLEU and TER (both
at p ≤ 0.01). This can only happen if the development set is too far apart from the test set –
in other words, the development set is a poor generalization over the in-domain material, as
a result of which the weighting overfits to it. Comparison of the unoptimized and optimized
cross-entropies (presented in Table 4) confirms this conclusion: the cross-entropies naturally
decrease on the development set both in case of DE–FR and DE–IT as the result of optimization;
however, optimization also leads to increased cross-entropy of the combined model on the
DE–IT test set.

Further experiments are needed to clarify the influence of interpolated language and translation
models, as well as their interplay, on translation quality. Our evaluation of the combined DE–FR
systems stands in contrast to the claim by Foster and Kuhn (2007) that “LM adaptation works
well, and adding an adapted TM yields no improvement”—rather than that, TM combination
works well, and adding an adapted LM yields no significant improvement in our case. However,
we cannot generalize this finding to the combined DE–IT systems.

Apart from that, it is remarkable that the estimated interpolation weights of all in-domain
models clearly exceed 90%, both in the DE–FR and DE–IT systems (see Section 3.2.2). The
high percentages confirm that the marketing texts we look at are very different from our out-
of-domain language material, which justifies the development of domain-specific SMT models
instead of using out-of-the-box systems that are mostly trained on general-domain resources.
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f arg max
e
ϕ(e| f )unweighted argmax

e
ϕ(e| f )weighted

Abgasemissionen émissions de gaz émissions de gaz d’échappement
Arten espèces types
Decke couverture plafond
Kiste boîte caisse
Klappe ferme clapet
Linksverkehr conduite conduite à gauche
PKW voitures voiture particulière
Tempo rythme vitesse
Unterbodenverkleidung caisse garnitures du dessous de caisse
Werke œuvres usines
Zulassungen autorisations immatriculations
Zünder détonateur amorce

Table 5: French terms e that maximize the translation probabilities in the unweighted (unweighted mode)
and weighted (weighted TM and weighted LM+TM modes) translation models of the DE–FR systems, given
a selection of German terms f .

5 Conclusion and Future Work

In our present study on using domain-specific translation memories for training machine
translation systems, we have shown that very limited amounts of in-domain data can be
successfully complemented with general-domain parallel corpora for improving translation
performance. Our experiments demonstrate that assigning adequate weights to the in-domain
and out-of-domain language and translation models is crucial for successful combinations.
Our evaluations confirm that while the number of OOV types decreases through adding large
amounts of out-of-domain data, the in-domain terminology prevails over alternative translations
due to the weighting. In our German–French and German–Italian systems, using both an
interpolated language and translation model has resulted in significant BLEU, METEOR and
TER increases. These performance gains have been confirmed by a human evaluator who is
familiar with the domain terminology.

In the further course of our project, we would like to give particular attention to German
compounds, which constitute approximately 65% of the remaining OOV words in our combined
systems, depending on test set and target language. We would like to assess in a systematic
way which of the numerous approaches to decompounding such as (Koehn and Knight, 2003;
Dyer, 2009; Stymne, 2009; Hardmeier et al., 2010) is suitable for our data and translation
scenario. Ultimately, we plan to conduct targeted in-situ experiments in order to measure the
impact of using our domain-adapted SMT systems in their designated human-based translation
workflows.
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